Tools
Pricing
Log in
Try for free

SKEW Excel Formula

Convert your text instructions into Excel formulas - powered by AI.

Syntax
=SKEW(number1, [number2], ...)
Example Use Case
You have a dataset where Column A contains the test scores of students in a class. You can use the SKEW function to determine the skewness of the distribution of these scores. This helps in understanding whether the scores are symmetrically distributed or if there is a tendency for scores to be higher or lower, which can inform teaching strategies and highlight areas where students may need additional support.
Generate
Explain
formula based on
Generate with AI

What is a SKEW Formula in Excel?

The SKEW function in Excel is a statistical tool that calculates the skewness of a dataset. Skewness measures the asymmetry of the distribution of values in a dataset. A positive skew indicates that the tail on the right side of the distribution is longer or fatter than the left side, while a negative skew indicates that the tail on the left side is longer or fatter than the right side. A skewness value close to zero suggests a symmetrical distribution.

In simpler terms, the SKEW function helps you understand the shape of your data distribution, which can be crucial for statistical analysis and decision-making.

A Practical Example

Imagine you are analyzing the test scores of a group of students, and you have the following data in an Excel spreadsheet:

Test Scores Table:

Student Test Score
Alice 85
Bob 90
Charlie 78
David 92
Eve 88

You want to determine the skewness of the test scores to understand how they are distributed.

SKEW Formula

To calculate the skewness of the test scores, you would use the SKEW formula as follows:

EXCEL icon EXCEL
=SKEW(B2:B6)

Breakdown of the Formula:

  • B2:B6: This is the range of values for which you want to calculate the skewness.

Result of the Formula

When you apply the formula, it calculates the skewness of the test scores. The output would be a single value representing the skewness of the dataset.

Skewness of Test Scores
0.15

Here, a skewness value of 0.15 indicates a slight positive skew, suggesting that there are a few higher scores pulling the average up.

Why Use SKEW?

The SKEW function is particularly useful when you need to analyze the distribution of your data. Understanding skewness can help you assess whether your data meets the assumptions of certain statistical tests and can guide you in making informed decisions based on the characteristics of your dataset.

Key Takeaways:

  • SKEW: Calculates the skewness of a dataset, indicating the asymmetry of the distribution.
  • Data Distribution Analysis: Helps you understand the shape of your data, which is essential for statistical analysis.
  • Common Use Cases: Ideal for academic research, quality control, and any scenario where understanding data distribution is crucial.

Understanding how to use the SKEW function can significantly enhance your statistical analysis capabilities in Excel, enabling you to extract meaningful insights from your datasets.

Happy analyzing!

Check out all of the Excel formulas
=ACCRINT(issue, first_interest, settlement, maturity, rate, par, frequency, [basis])
The ACCRINT formula calculates accrued interest for bonds by inputting parameters like issue date, rate, and maturity for precise results.
=ACCRINTM(issue, first_interest, settlement, maturity, rate, par, frequency, [basis])
The ACCRINTM function calculates accrued interest for bonds from issue date to maturity, providing a quick interest assessment.
=ADDRESS(row_num, column_num, [abs_num], [a1], [sheet])
The ADDRESS function generates a cell reference based on specified row and column numbers, allowing dynamic referencing in formulas.
=AGGREGATE(function_num, options, array, [k], [sigma])
The AGGREGATE function performs advanced calculations while allowing you to ignore errors and customize results for better data analysis.
=AMORDEGRC(cost, date_purchased, first_period, salvage, life, [method], [month])
The AMORDEGRC function calculates depreciation for an asset based on its cost, purchase date, salvage value, and lifespan.
=AMORLINC(cost, date_purchased, first_period, salvage, life, [method], [month])
The AMORLINC function calculates an asset's depreciation over time, factoring in cost, purchase date, salvage value, and lifespan.
=ARRAYTOTEXT(array, [format])
The ARRAYTOTEXT formula converts arrays into text format in Excel, enabling customized formatting for improved data presentation.
=AVEDEV(number1, [number2], ...)
The AVEDEV function calculates the average of absolute deviations from the mean, helping assess data variability and dispersion in a dataset.
=AVERAGEA(value1, [value2], ...)
The AVERAGEA function calculates the average of a range, treating text as 0 and logical values as 1, including all data types in the range.
=AVERAGEIF(range, criteria, [average_range])
The AVERAGEIF function calculates the average of a range based on specified criteria, enhancing data analysis efficiency in Excel.
=AVERAGEIFS(average_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
The AVERAGEIFS function calculates the average of a dataset based on specified criteria, allowing for precise data analysis in Excel.
=AVERAGE(number1, [number2], ...)
The AVERAGE function calculates the mean of a range of numbers, providing insights for accurate data analysis in Excel.
=BASE(number, radix, [min_length])
The BASE function converts numbers to specified bases, allowing customization of radix and minimum length for flexible data representation.
=BINOM.DIST(number_s, trials, probability_s, cumulative)
The BINOM.DIST formula calculates the probability of a specific number of successes in a binomial distribution based on trials and success rate.
=BINOMDIST(number_s, trials, probability_s, cumulative)
The BINOMDIST formula calculates the probability of achieving a specific number of successes in a binomial distribution scenario.
=BITAND(number1, number2)
The BITAND function performs a bitwise AND operation between two numbers, returning a number that represents the common bits set to 1.
=BITLSHIFT(number, shift_amount)
The BITLSHIFT formula shifts bits to the left, multiplying the number by 2 for each shift, useful for advanced data manipulation.
=BITRSHIFT(number, shift_amount)
The BITRSHIFT function shifts bits of a number to the right, effectively dividing it by powers of two for data manipulation.
=BITXOR(number1, number2)
The BITXOR function performs a bitwise XOR operation between two numbers, useful for efficient data analysis in Excel.
=CEILING.MATH(number, [significance], [mode])
The CEILING.MATH function rounds numbers up to the nearest specified significance, helping to standardize values in calculations.
=CEILING(number, significance)
The CEILING function rounds numbers up to the nearest specified significance, ensuring precise calculations in Excel.
=CEILING.PRECISE(number, significance)
The CEILING.PRECISE function rounds numbers up to the nearest specified significance, ensuring accurate and precise calculations in Excel.
=CELL(info_type, [reference])
The =CELL(info_type, [reference]) formula retrieves details about a cell's formatting, location, or contents in Excel.
=CHOOSECOLS(array, column_num1, [column_num2], ...)
The CHOOSECOLS function selects specific columns from an array, simplifying data analysis by focusing on relevant information.
=CHOOSE(index_num, value1, [value2], ...)
The CHOOSE function selects a value from a list based on a specified index number, streamlining data retrieval and management in Excel.
=CHOOSEROWS(array, row_num)
The CHOOSEROWS function selects specific rows from an array, enhancing data analysis by allowing targeted data retrieval.
=COMBIN(number, number_chosen)
The COMBIN function calculates the number of combinations for a given number of items, helping you choose subsets from a larger set.
=COMPLEX(real_num, i_num, [suffix])
The COMPLEX function creates complex numbers from real and imaginary parts, aiding in advanced data analysis in Excel.
=CONCATENATE(text1, [text2], ...)
The CONCATENATE function combines multiple text strings into one, improving data organization and presentation in Excel.
=CONVERT(number, from_unit, to_unit)
The CONVERT function is used to change a value from one unit of measurement to another in Excel, simplifying unit conversions.
=COUNTA(value1, [value2], ...)
The COUNTA function counts non-empty cells in a specified range, aiding in effective data analysis and summarization.
=COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2], ...)
The COUNTIF function counts the number of cells in a range that meet a specified condition or criteria.
=COUPDAYBS(settlement, maturity, frequency, [basis])
The COUPDAYBS function calculates the number of days from the settlement date to the next coupon payment date for a bond.
=COUPDAYSNC(settlement, maturity, frequency, [basis])
The COUPDAYSNC function calculates the number of days from the settlement date to the next coupon payment date for a security.
=COUPDAYS(settlement, maturity, frequency, [basis])
The COUPDAYS function calculates the number of coupon payment days between settlement and maturity dates for a security.
=COUPNCD(settlement, maturity, frequency, [basis])
The COUPNCD function calculates the next coupon payment date for bonds, based on the settlement and maturity dates provided.
=COUPNUM(settlement, maturity, frequency, [basis])
The COUPNUM function calculates the total number of coupon payments between the settlement date and maturity date of a bond.
=COUPPCD(settlement, maturity, coupon, frequency, [basis])
The COUPPCD function calculates the next coupon payment date for bonds, simplifying bond analysis by providing essential payment timing information.
=CUMIPMT(rate, nper, pv, start_period, end_period, type)
The CUMIPMT function calculates cumulative interest payments over a specified period, using rate, periods, present value, and payment timing.
=CUMPRINC(rate, nper, pv, start_period, end_period, type)
The CUMPRINC formula calculates total principal payments over a period, using interest rate, periods, present value, and payment timing.
=DATEDIF(start_date, end_date, unit)
The DATEDIF formula calculates the difference between two dates by specifying the start date, end date, and desired unit for accurate results.
=DAVERAGE(database, field, criteria)
The DAVERAGE function calculates the average of a specified field in a database that meets defined criteria.
=DAYS360(start_date, end_date, [method])
The DAYS360 function calculates the number of days between two dates based on a 360-day year, with options for different day count conventions.
=DCOUNTA(database, field, criteria)
The DCOUNTA function counts non-empty entries in a database that meet specified criteria, helping analyze data effectively.
=DCOUNT(database, field, criteria)
The DCOUNT function counts the number of records in a database that meet specified criteria, aiding in precise data analysis.
=DDB(cost, salvage, life, period, [factor])
The DDB function calculates asset depreciation using the double declining balance method, factoring in cost, salvage value, life, and period.
=DEC2HEX(number, [places])
The DEC2HEX function converts decimal numbers to hexadecimal format in Excel, with an option for padding digits.
=DEC2OCT(number, [places])
The DEC2OCT function converts decimal numbers to octal format in Excel, with an option to specify the number of digit places.
=DELTA(number1, [number2])
The DELTA function compares two numbers, returning 1 if they are equal and 0 if they are not, useful for logical tests in Excel.
=DEVSQ(number1, [number2], ...)
The DEVSQ function calculates the sum of squared deviations from the mean, aiding in statistical analysis and providing data insights.
=DGET(database, field, criteria)
The DGET function retrieves a single value from a database that meets specified criteria, aiding in targeted data analysis.
=DISC(settlement, maturity, rate, yield, redemption, frequency, [basis])
The DISC function calculates the discount on a security based on settlement, maturity, rate, yield, redemption, frequency, and basis.
=DMAX(database, field, criteria)
The DMAX function returns the highest value from a specified field in a database that meets given criteria.
=DMIN(database, field, criteria)
The DMIN function finds the minimum value in a database that meets specified criteria, aiding in efficient data analysis.
=DOLLARDE(fraction, fraction_denom)
The DOLLARDE function converts fractional dollar amounts to decimal, simplifying financial calculations in Excel.
=DOLLARFR(decimal, fraction)
The DOLLARFR function converts decimal numbers into fractional dollar amounts for accurate financial calculations.
=DOLLAR(number, [decimals])
The DOLLAR function formats numbers as currency, allowing customization of decimal places for precise financial reporting.
=DPRODUCT(database, field, criteria)
The DPRODUCT function multiplies values in a specified field of a database that meet defined criteria.
=DROP(array, rows, [columns])
The DROP function removes designated rows and columns from an array, simplifying data for analysis and enhancing clarity in Excel.
Try our other free AI data tools
//e1b5c549a6dd5273e224cd87b24dd3fb.cdn.bubble.io/f1712248048835x171910885545995420/data%20analyser.svg_icon
AI Data Analysis Chat
Chat with your data to generate visualizations, spreadsheets, insights, advanced analysis & more.
//e1b5c549a6dd5273e224cd87b24dd3fb.cdn.bubble.io/f1711640762344x820626742105414500/excel-formula-generator_icon.svg_icon
AI Excel Formula Generator
Convert your text instructions into formulas or input a formula to have it explained with our Excel AI Formula Generator.
//e1b5c549a6dd5273e224cd87b24dd3fb.cdn.bubble.io/f1724422435477x384387332830927740/sentiment-analysis-tool.svg_icon
Sentiment Analysis Tool
Upload a file or list of text to generate the sentiment - positive, negative or neutral.